Refine Your Search

Topic

Search Results

Technical Paper

Combined Cycle Diesel-Stirling Heat Engine

1985-09-01
851521
A new concept is described for a combined cycle Diesel-Stirling engine that promises to achieve an extraordinarily high thermal efficiency. The two basic cycles are coupled together in series, the high temperature exhaust gases from an adiabatic Diesel engine are fed into a high efficiency Stirling engine in such a way that both engines produce mechanical power. The whole combined cycle is highly turbocharged in order to get the desired power density, favorable heat transfer conditions and energy saving regeneration of exhaust gas heat. The problems posed by such a combined cycle are examined and calculation results are presented and discussed using a mathematical model developed as a preliminary effort of optimization and evaluation.
Technical Paper

Solid Lubrication Studies for Adiabatic Diesel Engines

1985-02-25
850508
A new self lubricating material has been assessed in a laboratory rig simulating high temperature piston rings for adiabatic diesel engines. The material consists of a solid metallic surface containing half millimetre diameter pockets filled with solid lubricant. The friction and wear properties of conventional piston ring surfaces were assessed at 380°C versus a chromium oxide counterface. This was followed by a study of the properties of various solid lubricant formulations which were then evaluated as fillers for surface pockets. The most promising solid lubricated materials contained molybdenum disulphide or lithium fluoride plus copper.
Technical Paper

Exploratory Development of Insulated Components for High Temperature Engines

1988-02-01
880191
Significant headway has recently been achieved in advanced high-temperature component design. Progress has been made in selecting a highly effective thermal insulating design composed of a titanium alloy piston with 1.0 mm thermal barrier coating which provides the same level of insulating effectiveness as a ductile iron piston with 2.5 mm coating. The low thermal conductivity of Titanium Alloy 6242 inherently provides a significant level of thermal resistance which effectively reduces the required coating thickness, reduces thermal stresses, and nearly eliminates coating thermal expansion mismatch. Other benefits of the titanium alloy piston include low weight and increased high temperature strength. Thermal rig testing has been completed on several plasma-sprayed zirconia coatings and a critical durability threshold thickness of 1.25 mm has been identified. In addition, zirconia coatings and chrome-oxide-densified Eirconia coatings have been screened in a small bore diesel engine.
Technical Paper

Thin Thermal Barrier Coatings for Engines

1989-02-01
890143
Contrary to the thick thermal barrier coating approach used in adiabatic diesel engines, the authors have investigated the merits of thin coatings. Transient heat transfer analysis indicates that the temperature swings experienced at combustion chamber surfaces depend primarily on material thermophysical properties, i.e., conductivity, density, and specific heat. Thus, cyclic temperature swings should be alike whether thick or thin (less than 0.25 mm) coatings are applied, Furthermore, thin coatings would lead to lower mean component temperatures and would be easier to apply than thick coatings. The thinly-coated engine concept offers several advantages including improved volumetric efficiency, lower cylinder liner wall temperatures, improved piston-liner tribological behavior, and improved erosion-corrosion resistance and thus greater component durability.
Technical Paper

High Temperature Engine Component Exploratory Design Development

1989-02-01
890296
Significant progress has been achieved in the development of advanced high-temperature, insulated, in-cylinder components for high-power-output miliraty diesel engines. Computer aided modeling and small-bore engine component testing have both been utilized extensively during the exploratory development process. Specific insulated optimal designs for the piston, cylinder headface, and cylinder liner have been identified. The designs all utilize thermal barrier coatings, titanium alloy, and interfacial air-gaps to provide thermal resistance. Finite element modeling including diesel cycle simulation has been utilized to screen and optimize material and design concepts relative to program objectives, while small-bore engine testing has been utilized to demonstrate component integrity. An improved slurry densified thermal barrier coating has been demonstrated by testing on a high temperature small-bore engine.
Technical Paper

Analysis and Test of Insulated Components for Rotary Engine

1989-02-01
890326
The two newest internal combustion engine technologies which have demonstrated the most promise in the last 25 years are the direct-injection stratified-charge (DISC) rotary engine [1] and the adiabatic diesel engine [2]. The (DISC) engine is particularly attractive for aviation applications [3] because of its light weight, multi-fuel capability and potential for low fuel consumption. However, one disadvantage with the DISC engine is the weight and size of the liquid cooling system. NASA Lewis Research Center has supported a technology enablement program to advance the DISC rotary engine for general aviation applications and recognizes the importance of improvement in fuel consumption and reductions in the coolant system weight [4].
Technical Paper

Adiabatic Engine Trends-Worldwide

1987-02-01
870018
Since the early inception of the adiabatic diesel engine in 1974, marked progress has taken place as a result of research efforts performed all over the world. The use of ceramics for heat engines in production applications has been limited to date, but is growing. Ceramic use for production heat engine has included: combustion prechambers, turbochargers, exhaust port liners, top piston ring inserts, glow plugs, oxygen sensors; and additional high temperature friction and wear components. The potential advantages of an adiabatic engine vary greatly with specific application (i.e., commercial vs. military, stationary vs. vehicular, etc.), and thus, a better understanding of the strengths and weaknesses (and associated risks) of advanced adiabatic concepts with respect to materials, tribology, cost, and payoff must be obtained.
Technical Paper

In-Cylinder Components for High Temperature Diesel

1987-02-01
870159
The development of a practical, reliable, and durable adiabatic engine which will meet all advanced military requirements is still hindered because of available insulating materials and design limitations. The high temperatures and thermal gradients which are associated with a highly insulated low heat rejection engine create monumental challenges to engine designers. Over the past 12 years a wealth of information and experience has been generated. Numerous approaches to insulate the combustion chamber have been explored but none are known to simultaneously meet heat rejection, durability, and performance requirements. This paper will present the first year's results and the future plans of an adiabatic engine component technology development program for high output military engines, sponsored by the U.S. Army Tank-Automotive Command Center.
Technical Paper

Starting Low Compression Ratio Rotary Wankel Diesel Engine

1987-02-01
870449
The single stage rotary Wankel engine is difficult to convert into a diesel version having an adequate compression ratio and a compatible combustion chamber configuration. Past efforts in designing a rotary-type Wankel diesel engine resorted to a two-stage design. Complexity, size, weight, cost and performance penalties were some of the drawbacks of the two-stage Wankel-type diesel designs. This paper presents an approach to a single stage low compression ratio Wankel-type rotary engine. Cold starting of a low compression ratio single stage diesel Wankel becomes the key problem. It was demonstrated that the low compression single stage diesel Wankel type rotary engine can satisfactorily be cold started with a properly designed combustion chamber in the rotor and a variable heat input combustion aid. A 10.5 compression ratio rotary Wankel-type engine was started in 15 secs at −10°C inlet air temperature. High cranking speeds and white smoke were the biggest drawbacks of this design.
Technical Paper

High Pressure Fuel Injection for High Power Density Diesel Engines

2000-03-06
2000-01-1186
High-pressure fuel injection combustion is being applied as an approach to increase the power density of diesel engines. The high-pressure injection enables higher air utilization and thus improved smoke free low air-fuel ratio combustion is obtained. It also greatly increases the injection rate and reduces combustion duration that permits timing retard for lower peak cylinder pressure and improved emissions without a loss in fuel consumption. Optimization of these injection parameters offers increased power density opportunities. The lower air-fuel ratio is also conducive to simpler air-handling and lower pressure ratio turbocharger requirements. This paper includes laboratory data demonstrating a 26 percent increase in power density by optimizing these parameters with injection pressures to 200 mPa.
Technical Paper

Advancements in High Temperature Cylinder Liner and Piston Ring Tribology

2000-03-06
2000-01-1237
The high temperature tribology issue for uncooled Low Heat Rejection (LHR) diesel engines where the cylinder liner piston ring interface exceeds temperatures of 225°C to 250°C has existed for decades. It is a problem that has persistently prohibited advances in non-watercooled LHR engine development. Though the problem is not specific to non-watercooled LHR diesel engines, it is the topic of this research study for the past two and one half years. In the late 1970s and throughout the 1980s, a tremendous amount of research had been placed upon the development of the LHR diesel engine. LHR engine finite element design and cycle simulation models had been generated. Many of these projected the cylinder liner piston ring top ring reversal (TRR) temperature to exceed 540°C[1]. In order for the LHR diesel to succeed, a tribological solution for these high TRR temperatures had to be developed.
Technical Paper

Direct Visualization of High Pressure Diesel Spray and Engine Combustion

1999-10-25
1999-01-3496
An experimental study was carried out to visualize the spray and combustion inside an AVL single-cylinder research diesel engine converted for optical access. The injection system was a hydraulically-amplified electronically-controlled unit injector capable of high injection pressure up to 180 MPa and injection rate shaping. The injection characteristics were carefully characterized with injection rate meter and with spray visualization in high-pressure chamber. The intake air was supplied by a compressor and heated with a 40kW electrical heater to simulate turbocharged intake condition. In addition to injection and cylinder pressure measurements, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process. The results showed that optically accessible engines provide very useful information for studying the diesel combustion conditions, which also provided a very critical test for diesel combustion models.
Technical Paper

Injection Characteristics that Improve Performance of Ceramic Coated Diesel Engines

1999-03-01
1999-01-0972
Thin thermal barrier ceramic coatings were applied to a standard production direct injection diesel engine. The resultant fuel economy when compared to the standard metallic engine at full load and speed (2600) was 6% better and 3.5% better at 1600 RPM. Most coated diesel engines todate have not shown significant fuel economy one way or the other. Why are the results more positive in this particular case? The reasons were late injection timing, high injection pressure with high injection rates to provide superior heat release rates with resultant lower fuel consumption. The recent introduction of the high injection pressure fuel injection system makes it possible to have these desirable heat release rates at the premixed combustion period. Of course the same injection characteristics were applied to the standard and the thin thermal barrier coating case. The thin thermal barrier coated engine displayed superior heat release rate.
Technical Paper

Simulation of Combustion in Direct-Injection Low Swirl Heavy-Duty Type Diesel Engines

1999-03-01
1999-01-0228
A two phase, global combustion model has been developed for quiescent chamber, direct injection diesel engines. The first stage of the model is essentially a spark ignition engine flame spread model which has been adapted to account for fuel injection effects. During this stage of the combustion process, ignition and subsequent flame spread/heat release are confined to a mixing layer which has formed on the injected jet periphery during the ignition delay period. Fuel consumption rate is dictated by mixing layer dynamics, laminar flame speed, large scale turbulence intensity, and local jet penetration rate. The second stage of the model is also a time scale approach which is explicitly controlled by the global mixing rate. Fuel-air preparation occurs on a large-scale level throughout this phase of the combustion process with each mixed fuel parcel eventually burning at a characteristic time scale as dictated by the global mixing rate.
Technical Paper

NATO Qualification Test of Detroit Diesel 8V71-TA Engine at 530 BHP with Advanced Ceramic Components

2000-03-06
2000-01-0524
Objective: This paper documents the 400 hour NATO qualification endurance test for the Detroit Diesel Corporation (DDC), 8V71TA/LHR (turbocharged, aftercooled/low heat rejection) diesel engine rated at 395 kw (530 bhp) at 2500 RPM for potential M109 Self-Propelled Howitzer (SPH) application. The engine was developed under the DARPA (Defense Advanced Research Projects Agency) Advanced Ceramic Technology Insertion Program, managed by U.S. Army TACOM (Tank-automotive and Armaments Command). The test was performed by DDC in accordance with the standards set forth in NATO AEP-5 (Allied Engineering Publication). The ACTIP program objective was to demonstrate the production viability of selected ceramic engine components and investigate the manner in which the ceramic technology integration would enhance the engine's performance and durability. Effects on performance and durability are reported herein. Four engine systems were developed with ceramic components for the ACTIP program.
Technical Paper

Two-Stroke Engine Design With Selective Exhaust Gas Recirculation - a Concept

1997-10-27
978493
High unburned hydrocarbon emissions and poor fuel consumption arise in a carburetted two-stroke engine because of its scavenging process. Time resolved hydrocarbon concentration at the exhaust port has shown a definite trend in concentration of unburned hydrocarbon with respect to crank angle. This paper discusses an exhaust gas recirculation system designed to trap fraction of the exhaust gas that is rich in short circuited fresh charge. In this design, the differential pressure between the crankcase and the exit at the exhaust port is communicated with each other at the appropriate time through passages in the piston and the cylinder block. The design is thus capable of selectively trapping and recirculating fraction of the exhaust gas rich in short circuited fresh charge back into the cylinder for combustion.
X